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1. INTRODUCTION

Economists are aware of problems arising from errors-in-variables in regressors but generally
ignore measurement error in the dependent variable. In this paper, we study the consequences
of measurement error in the dependent variable of conditional quantile models and propose a
maximum likelihood approach to consistently estimate the distributional effects of covariates
in such a setting. Quantile regression (Koenker and Bassett, 1978) has become a very popular
tool for applied microeconomists to consider the effect of covariates on the distribution of the
dependent variable. However, as left-hand side variables in microeconometrics often come from
self-reported survey data, the sensitivity of traditional quantile regression to LHS measurement
error poses a serious problem to the validity of results from the traditional quantile regression
estimator.

The errors-in-variables (EIV) problem has received significant attention in the linear model,
including the well-known results that classical measurement error causes attenuation bias if
present in the regressors and has no effect on unbiasedness if present in the dependent variable.
See Hausman (2001) for an overview. In general, the linear model results do not hold in
nonlinear models." We are particularly interested in the linear quantile regression setting.?
Hausman (2001) observes that EIV in the dependent variable in quantile regression models
generally leads to significant bias, a result very different from the linear model intuition.

In general, EIV in the dependent variable can be viewed as a mixture model.> We show
that under certain discontinuity assumptions, by choosing the growth speed of the number of
knots in the quantile grid, our estimator has fractional polynomial of n convergence speed and
asymptotic normality. We suggest using the bootstrap for inference.

Intuitively, the estimated quantile regression line ng (1) for quantile 7 may be far from the
observed y; because of LHS measurement error or because the unobserved conditional quantile
u; of observation i is far from 7. Our ML framework effectively estimates the likelihood that a
given quantile-specific residual (g;; = y; — x;5(7;)) is large because of measurement error rather

than observation i’s unobserved conditional quantile u; being far away from 7;. The estimate of

!Schennach (2008) establishes identification and a consistent nonparametric estimator when EIV exists in an
explanatory variable. Studies focusing on nonlinear models in which the left-hand side variable is measured
with error include Hausman et. al (1998) and Cosslett (2004), who study probit and tobit models, respectively.
2Carroll and Wei (2009) proposed an iterative estimator for the quantile regression when one of the regressors
has EIV.

3A common feature of mixture models under a semiparametric or nonparametric framework is the ill-posed
inverse problem, see Fan (1991). We face the ill-posed problem here, and our model specifications are linked
to the Fredholm integral equation of the first kind. The inverse of such integral equations is usually ill-posed
even if the integral kernel is positive definite. The key symptom of these model specifications is that the high-
frequency signal of the objective we are interested in is wiped out, or at least shrunk, by the unknown noise if
its distribution is smooth. To uncover these signals is difficult and all feasible estimators have a lower speed of
convergence compare to the usual \/n case. The convergence speed of our estimator relies on the decay speed of
the eigenvalues of the integral operator. We explain this technical problem in more detail in the related section
of this paper.
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the joint distribution of the conditional quantile and the measurement error allows us to weight
the log likelihood contribution of observation ¢ more in the estimation of 3(7;) where they are
likely to have u; ~ 7;. In the case of Gaussian errors in variables, this estimator reduces to
weighted least squares, with weights equal to the probability of observing the quantile-specific
residual for a given observation as a fraction of the total probability of the same observation’s
residuals across all quantiles.

An empirical example (extending Angrist et al., 2006) studies the heterogeneity of returns
to education across conditional quantiles of the wage distribution. We find that when we
correct for likely measurement error in the self-reported wage data, we estimate considerably
more heterogeneity across the wage distribution in the returns to education. In particular, the
education coefficient for the bottom of the wage distribution is lower than previously estimated,
and the returns to education for latently high-wage individuals has been increasing over time
and is much higher than previously estimated. By 2000, the returns to education for the top of
the conditional wage distribution are over three times larger than returns for any other segment
of the distribution.

The rest of the paper proceeds as follows. In Section 2, we introduce model specification and
identification conditions. In Section 3, we consider the MLE estimation method and analyzes
its properties. In Section 4, we discuss sieve estimation. We present Monte Carlo simulation
results in Section 5, and Section 6 contains our empirical application. Section 7 concludes. The
Appendix contains an extension using the deconvolution method and additional proofs.

Notation: Define the domain of x as X. Define the space of y as J. Denote a A b as the
minimum of ¢ and b, and denote a V b as the larger of a and b. Let ? be weak convergence
(convergence in distribution), and ? stands for convergence in probability. Let 7* be weak
convergence in outer probability. Let f(e]|o) be the p.d.f of the EIV ¢ parametrized by o.
Assume the true parameters are fy(-) and og for the coefficient of the quantile model and
parameter of the density function of the EIV. Let d, be the dimension of x. Let X be the
domain of o. Let d, be the dimension of parameter o. Define ||(80.00)|| := /||Boll3 + ||o0l |3
as the L? norm of (3y,09), where || - ||2 is the usual Euclidean norm. For §;, € R¥, define

1Bk, 00)l1* = V/11Bkl[3/% + llool[3-

2. MODEL AND IDENTIFICATION

We consider the standard linear conditional quantile model, where the 7" quantile of the
dependent variable y* is a linear function of =

Qy(7|z) = 2B(7).

However, we are interested in the situation where y* is not directly observed, and we instead
observe y where

y=y"+e
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FIGURE 1. Check Function p,(z)

and ¢ is a mean-zero, i.i.d error term independent from y*, x and 7.

Unlike the linear regression case where EIV in the left hand side variable does not matter
for consistency and asymptotic normality, EIV in the dependent variable can lead to severe
bias in quantile regression. More specifically, with p,(z) denoting the check function (plotted
in Figure 1)

pr(z) = z(T = 1(z < 0)),

the minimization problem in the usual quantile regression
3(r) € argmin Blp(y — 2b)], @.1)

is generally no longer minimized at the true Sy(7) when EIV exists in the dependent variable.
When there exists no EIV in the left-hand side variable, i.e. y* is observed, the FOC is

Elz(r — 1(y" < z6(7)))] =0, (2.2)

where the true (7) is the solution to the above system of FOC conditions as shown by Koenker
and Bassett (1978). However, with left-hand side EIV, the FOC condition determining B(T)
becomes

Elz(t — 1(y* + ¢ < zB(7)))] = 0. (2.3)
For 7 # 0.5, the presence of measurement error ¢ will result in the FOC being satisfied at
a different estimate of § than in equation (2.2) even in the case where ¢ is symmetrically

distributed because of the asymmetry of the check function. In other words, in the minimization
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problem, observations for which y* > z5(7) and should therefore get a weight of 7 may end up
on the left-hand side of the check function, receiving a weight of (1 — 7) . Thus, equal-sized
differences on either side of zero do not cancel each other out.?

A straightforward analytical example below demonstrates the intuition behind the problem
of left-hand errors in variables for estimators concerned with estimating the distributional
parameters. We then provide a simple Monte-Carlo simulation to show the degree of bias in a

simple two-factor model with random disturbances on the dependent variable y.

Example 1. Consider the bivariate data-generating process

yi = Po(us) + Br(w;) - x5 + &

where x; € {0,1}, the measurement error ¢; is distributed N'(0, 1), and the unobserved con-
ditional quantile u; of observation ¢ follows u; ~ UJ0,1]. Let the coefficient function Sy(7) =
B1(1) = ®~1(7), with ®~1(-) representing the inverse CDF of the standard normal distribution.
Because quantile regression estimates the conditional quantiles of y given x, in this simple set-
ting, the estimated slope coefficient function is simply the difference in inverse CDFs for x = 1
and z = 0. For any quantile 7, B (7) = szizl(T) - Fy_|;:0(7') where F'(-) is the CDF of y.
With no measurement error, the distribution y|z =1 is A'(0,4) and the distribution of y|x = 0
is N'(0,1). In this case,
bir) = (VA= VD)o ! (1) = i (7),

or the estimated coefficient equals the truth at each 7. However, with non-zero measurement
error, ylr = 1 ~ N(0,5) and ylx = 0 ~ N(0,2). The estimated coefficient function under

measurement error [ (-) is
Bi(r) = (V5 —v2)@~ (),

which will not equal the truth for any quantile 7 # 0.5.

This example also illustrates the intuition offered by Hausman (2001) for compression bias
for bivariate quantile regression. For the median 7 = 0.5, because ®~1(0.5) = 0, 8(7) =
B () = B(r) = 0 such that the median is unbiased. For all other quantiles, however, since
V5 — /2 < 1, the coefficient estimated under measurement error will be compressed towards

the true coefficient on the median regression (31(0.5).

Example 2. We now consider a simulation exercise to illustrate the direction and magnitude of

measurement error bias in even simple quantile regression models. The data-generating process

4For median regression, 7 = .5 and so p.5(-) is symmetric around zero. This means that if € is symmetrically
distributed and S(7) symmetrically distributed around 7 = .5 (as would be the case, for example, if 3(7) were
linear in 7), the expectation in equation (2.3) holds for the true So(7). However, for non-symmetric &, equation
(2.3) is not satisfied at the true Bo(7).
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TABLE 1. Monte-Carlo Results: Mean Bias

EIV Quantile (1)

Parameter Distribution 0.1 0.25 0.5 0.75 0.9
e =0 0.006 0.003 0.002 0.000 -0.005
o e~ N(0,4) 0.196 0.155 0.031 -0.154 -0.272
Au(r) =e e~ N(0,16) 0.305 0.246 0.054 -0.219 -0.391
True parameter: 1.105 1.284 1.649 2.117 2.46
e =0 0.000 -0.003 -0.005 -0.006 -0.006
e ~N(0,4) 0.161 0.068 -0.026 -0.088 -0.115
Ba(m) = V7 e ~ N(0,16) 0.219 0.101 -0.031 -0.128 -0.174
True parameter: 0.316 0.5 0.707 0.866 0.949
Notes: Table reports mean bias (across 500 simulations) of slope coefficients estimated for each quantile
7 from standard quantile regression of y on a constant, x1, and x5 where y = x151(7) + z282(7) + ¢
and ¢ is either zero (no measurement error case, i.e. y* is observed) or ¢ is distributed normally with
variance 4 or 16. The covariates z; and x2 are i.i.d. draws from LN(0,1). N = 1,000.

for the Monte-Carlo results is

yi = Po(w;) + x1:61(wi) + z2if2(us) + €

with the measurement error ¢; again distributed as A/(0,02) and the unobserved conditional
quantile u; of observation ¢ following u; ~ U|0, 1]. The coefficient function 8(7) has components
Bo(r) = 0, pi(r) = exp(r), and Ba(r) = /7. The variables 21 and z2 are drawn from
independent lognormal distributions LN (0, 1). The number of observations is 1,000.

Table 1 presents Monte-Carlo results for three cases: when there is no measurement error
and when the variance of € equals 4 and 16. The simulation results show that under the
presence of measurement error, the quantile regression estimator is severely biased. Further-
more, we find evidence of the attenuation-towards-the-median behavior posited by Hausman
(2001), with quantiles above the median biased down and quantiles below the median upwardly
biased, understating the distributional heterogeneity in the 3(-) function. For symmetrically
distributed EIV and uniformly distributed §(7), the median regression results appear unbiased.
Comparing the mean bias when the variance of the measurement error increases from 4 to 16
shows that the bias is increasing in the variance of the measurement error. Intuitively, the
information of the functional parameter §(-) is decaying when the variance of the EIV becomes
larger.

2.1. Identification and Regularity Conditions. In the linear quantile model, it is assumed
that for any x € X, 3(7) is increasing in 7. Suppose 1, ..., z4, are dy-dimensional linearly
independent vectors in int(&X'). So Qy+(7|z;) = ;8(7) must be strictly increasing in 7. Consider
the linear transformation of the model with matrix A = [z1,...,z4,]":

Qy(rlx) = xB(7) = (xA™1)(AB(7)). (2.4)
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Let 7 = A and 3(r) = AB(7). The transformed model becomes

Q;(7|7) = TB(r), (2.5)

with every coefficient B (1) being weakly increasing in 7 for k € {1,...,d, }. Therefore, WLOG,
we can assume that the coefficients 3(-) are increasing and refer to the set of functions { Bk(‘)}ii 1
as co-monotonic functions. We therefore proceed assuming that S (-) is an increasing function
which has the properties of E (). All of the convergence and asymptotic results for Ek: (1) hold
for the parameter 3; after the inverse transform A~!.

Condition C1 (Properties of 8(-)). We assume the following properties on the coefficient vectors
B(r):
(1) B() is in the space M [B; x By X Bs... x By, | where the functional space M is defined as
the collection of all functions f = (fi, ..., fa,) : [0, 1] — [Bi1X...xBg,] with By, C R being
a closed interval Vk € {1,...,d, } such that each entry f : [0,1] — Bj is monotonically
increasing in 7.
(2) Let By = [lg, ug] so that I < Box(T) < up Yk € {1,...,dy} and 7 € [0, 1].
(3) Bo is a vector of C! functions with derivative bounded from below by a positive constant.
(4) The domain of the parameter o is a compact space ¥ and the true value o is in the
interior of ¥.

Under assumption C1 it is easy to see that the parameter space © := M x ¥ is compact.

Lemma 1. The space M[B; x Bs x Bs... X By] is a compact and complete space under LP, for
any p > 1.

Proof. See Appendix D.1. O

Monotonicity of B (-) is important for identification because in the log-likelihood function,
flylz) = fo (y — zf(u)|o)du is invariant when the distribution of random variable S(u) is
invariant. The function 3(-) is therefore unidentified if we do not impose further restrictions.
Given the distribution of the random variable {8(u)|u € [0,1]}, the vector of functions S :
[0,1] = B1 X By X ... X By, is unique under the rearrangement if the functions {5k()}gi1 are

co-monotonic.

Condition C2 (Properties of ). We assume the following properties of the design matrix x:
(1) E[2'x] is non-singular.
(2) The domain of z, denoted as X, is continuous on at least one dimension, i.e. there
exists k € {1,...,d,} such that for every feasible x_j, there is a open set X} C R such
that (Xp zi_p)) C X.
(3) Without loss of generality, 8;(0) > 0.
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Condition C3 (Properties of EIV). We assume the following properties of the measurement

error &:

(1) The probability function f(e|o) is differentiable in o.
2) For all o € X, there exists a uniform constant C' > 0 such that E[|log f(¢|o)|] < C.

(2)

(3) f(-) is non-zero all over the space R, and bounded from above.
(4) Ele] = 0.
(5)
(6)

Denote ¢(s|o) := [ exp(ise) f(e|o)de as the characteristic function of e.
6) Assume for any o1 and o5 in the domain of o, denoted as ¥, there exists a neighborhood

of 0, such that 28190 can be expanded as 1+ 320 ay(is)*.
#(slo2) k=2

Denote 0 := (5(-),0) € ©. For any 0, define the expected log-likelihood function L(6) as
follows:
L(0) = E[log g(ylz, 0)], (2.6)

where the conditional density function g(y|z, 6) is defined as

1
9(y|z,0) :/0 fly —xB(u)|o)du. (2.7)
Define the empirical likelihood as

Ln(e) = En[logg(y‘xve)]v (28)

The main identification results rely on the monotonicity of x3(7). The global identification
condition is the following:

Condition C4 (Identification). There does not exist (f1,01) # (Bo,00) in parameter space ©
such that g(y|z, 51,01) = g(y|x, Bo, 00) for all (z,y) with positive continuous density or positive

mass.

Theorem 1 (Nonparametric Global Identification). Under condition C1-C3, for any B(-) and
f(-) which generates the same density of y|z almost everywhere as the true function By(-) and
fo(), it must be that:

B(7) = Bo(7)
f(e) = fole).

Proof. See Appendix D.1. O
We also summarize the local identification condition as follows:

Lemma 2 (Local Identification). Define p(-) and 6(-) as functions that measure the deviation
of a given [ or o from the truth: p(t) = B(1) — Po(T) and 6(c) = o — 0g. Then there does
not exist a function p(t) € L?[0,1] and § € R such that for almost all (z,y) with positive
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continuous density or positive mass

1 1
/ fly —zB(7)|o)zp(r)dr = / § fr(y — xB(7))dT
0 0
except that p(T) =0 and § = 0.
Proof. See Appendix D.1. O

Condition C5 (Stronger local identification for o). For any 6 € S% 1,

(/ Fyly — (D)o Yep(r)dr — / Vhaly — oBr)d?) 0. (29)

(1) €L2[0 1]

3. MAXIMUM LIKELIHOOD ESTIMATOR

3.1. Consistency. The ML estimator is defined as:

~

(B(-),0 )Eargw(lgla§< Enlg(ylz, B(), 0)]. (3.1)

where g(-|-,-,-) is the conditional density of y given x and parameters, as defined in equation
(2.7)
The following theorem states the consistency property of the ML estimator.

Lemma 3 (MLE Consistency). Under conditions C1-C3, the random coefficients 5(-) and the
parameter o that determines the distribution of € are identified in the parameter space ©. The
maximum-likelithood estimator

1
(30).6) € arg _max _E, {mg /0 F(y — 2B(r)|o)dr

exists and converges to the true parameter (Po(-),00) under the L* norm in the functional

space M and Fuclidean norm in ¥ with probability approaching 1.
Proof. See Appendix D.2. O

The identification theorem is a special version of a general MLE consistency theorem (Van der
Vaart, 2000). Two conditions play critical roles here: the co-monotonicity of the §(-) function
and the local continuity of at least one right-hand side variable. If we do not restrict the
estimator in the family of monotone functions, then we will lose compactness of the parameter

space © and the consistency argument will fail.

3.2. Ill-posed Fredholm Integration of the First Kind. In the usual MLE setting with
the parameter being finite dimensional, the Fisher information matrix I is defined as:

~_[ofof
_E[am]
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In our case, since the parameter is continuous, the informational kernel I(u,v) is defined as®

() ([ s o

If we assume that we know the true o, i.e., § = 0, then the informational kernel becomes

I(u,v)[p(v),0] = E

By condition C5, the eigenvalue of I and Iy are both non-zero.
Since E[X'X] < oo, Iy(u,v) is a compact (Hilbert-Schmidt) operator. From the Riesz
Representation Theorem, L(u,v) has countable eigenvalues A\; > Ao > ... > 0 with 0 being the

only limit point of this sequence. It can be written as the following form:

Io() =D N (i)
=1

where 1); is the system of orthogonal functional basis, ¢ = 1,2,.... For any function s(-),
fol Iy(u,v)h(v)dv = s(u) is called the Fredholm integral equation of the first kind. Thus, the
first-order condition of the ML estimator is ill-posed. In Section (3.3) below, we establish
convergence rate results for the ML estimator using a deconvolution method.®

Although the estimation problem is ill-posed for the function 3(-), the estimation problem is
not ill-posed for the finite dimensional parameter o given that E[g,¢}] is non-singular. In the

Lemma below, we show that o converges to og at rate 1//n.

Lemma 4 (Estimation of o). If E[g,g,] is positive definite and conditions C1-C5 hold, the ML

estimator & has the following property:
G — 09— Oy(n"1). (3.3)

Proof. See Appendix D.2. O

3.3. Bounds for the Maximum Likelihood Estimator. In this subsection, we use the
deconvolution method to establish bounds for the maximum likelihood estimator. Recall that
the maximum likelihood estimator is the solution

(B,0) = argmax g ) coEnllog(g(y|z, 8, 0))]

as fs(r), 9(ylz, Bo(7),00) as g, and % as go-

6Kuhn (1990) shows that if the integral kernel is positive definite with smooth degree r, then the eigenvalue
\; is decaying with speed O(n™""'). However, it is generally more difficult to obtain a lower bound for the
eigenvalues. The decay speed of the eigenvalues of the information kernel is essential in obtaining convergence
rate. From the Kuhn (1990) results, we see that the decay speed is linked with the degree of smoothness of
the function f. The less smooth the function f is, the slower the decaying speed is. We show below that by
assuming some discontinuity conditions, we can obtain a polynomial rate of convergence.

5For notational convenience, we abbreviate %W
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Define x(so) = supjs<s, ]m| We use the following smoothness assumptions on the
distribution of ¢ (see Evodokimov, 2010).

Condition C6 (Ordinary Smoothness (OS)). x(so) < C(1 + |so|*).
Condition C7 (Super Smoothness (SS)). x(s9) < C1(1 + |s0|“?) exp(|so|*/C3).

The Laplace distribution L(0, b) satisfies the Ordinary Smoothness (OS) condition with A =
2. The Chi-2 Distribution x?2 satisfies the OS condition with \ = 5. The Gamma Distribution
I'(v, 0) satisfies the OS condition with A = v. The Exponential Distribution satisfies condition
OS with A = 1. The Cauchy Distribution satisfies the Super Smoothness (SS) condition with
A = 1. The Normal Distribution satisfies the SS condition with A\ = 2.

Lemma 5 (MLE Convergence Speed). Under assumptions C1-C5 and the results in Lemma 4,
(1) if Ordinary Smoothness holds (C6), then the ML estimator ofB satisfies for all T

B(r) = Bo(r)| 3 n” T

(2) if Super Smoothness holds (C7), then the ML estimator ofB satisfies for all T
o~ 1
1B(1) = Bo(7)| < log(n)™>.
Proof. See Appendix D.2. O

4. SIEVE ESTIMATION

In the last section we demonstrated that the maximum likelihood estimator restricted to
parameter space © converges to the true parameter with probability approaching 1. However,
the estimator still lives in a large space with 3(-) being d,-dimensional co-monotone functions
and o being a finite dimensional parameter. Although theoretically such an estimator does
exist, in practice it is computationally infeasible to search for the likelihood maximizer within
this large space. In this paper, we consider a spline estimator of 3(+) to mimic the co-monotone
functions 3(-) for their computational advantages in calculating the sieve estimator. The es-
timator below is easily adapted to the reader’s preferred estimator. For simplicity, we use a

piecewise constant sieve space, which we define as follows.

Definition 1 (Sieve Space). Define ©; = Q; x ¥, where Q; stands for increasing piecewise
constant functions on [0, 1] with J knots at {%} for j =0,1,...,J — 1. In other words, for any

B(-) € Qy, Bi(+) is a piecewise constant function on intervals [%, %) for j=0,...,J —1 and
k=1,....d,

We know that the L? distance of the space © ; to the true parameter 0y satisfies dz(6p, © ;) <
C7 for some generic constant C.

The sieve estimator is defined as follows:
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Definition 2 (Sieve Estimator).

(Bs(),0) = arg max E,[log g(y|z, 8,0)] (4.1)

Let d(61,62)* := E[[ (g(y‘x’zl(;@gégl)x’%)y dy] be a pseudo metric on the parameter space ©.
We know that d(6,6p) < L(6p|60) — L(6]60).

Let || - ||la be a norm such that [0y — 0||¢ < Cd(6y,0). Our metric || - ||4 here is chosen to be:
16117 = (6, I(u,v)[6)]) - (4.2)

By Condition C4, || - ||4 is indeed a metric.
For the sieve space O and any (Q7,0) € ©, define I as the following matrix:

/

1 2
1 2 1
o foJ frdr, f%“’ deT,...,f% frdr o

1 2
fOJ frdr, fij deT,...,f% frdr
J
g ’ g g ) q

I:=F

Again, by Condition C4, this matrix I is non-singular. Furthermore, if a certain discontinuity
condition is assumed, the smallest eigenvalue of I can be proved to be bounded away from some

polynomial of J.

Condition C8 (Discontinuity of f). Suppose there exists a positive integer A such that f €
C*1(R), and the A" order derivative of f equals:

FN@) = h(z) + 6(z — a), (4.3)

with h(z) being a bounded function and L' Lipschitz except at a, and 6(z — a) is a Dirac

o-function at a.

Remark. The Laplace distribution satisfies the above assumption with A = 1. There is an
intrinsic link between the above discontinuity condition and the tail property of the char-
acteristic function stated as the (OS) condition. Because ¢ (s) = is¢s(s), we know that
br(s) = ﬁqﬁf@)(s), while ¢f(;)(s) = O(1) under the above assumption. Therefore, assump-

tion C9 indicates that x(s) := sup ]%[ < C(1+ s"). In general, these results will hold as

long as the number of Dirac functions in f®) are finite in (4.3).
The following Lemma establishes the decay speed of the minimum eigenvalue of I.

Lemma 6. If the function f satisfies condition C8 with degree A > 0,

(1) the minimum eigenvalue of I, denoted as r(I), has the following property:
1 ~
2 S r).

1 10]]a
(2) 2y 3 SUPoep, 0|
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Proof. See Appendix D.3. O

The following Lemma establishes the consistency of the sieve estimator.

Lemma 7 (Sieve Estimator Consistency). If conditions C1-C6 and C9 hold, The sieve estima-
tor defined in (4.1) is consistent.

Given the identification assumptions in the last section, if the problem is identified, then
there exists a neighborhood - of g, for any 6 € A, 6 = 6y, we have:

o 5 [ B0

Proof. See Appendix D.3. O

> 0. (4.4)

Unlike the usual sieve estimation problem, our problem is ill-posed with decaying eigen-
value with speed J*. However, the curse of dimensionality is not at play because of the
co-monotonicity: all entries of vector of functions 3(-) are function of a single variable 7. It is
therefore possible to use sieve estimation to approximate the true functional parameter with
the number of intervals in the sieve J growing slower than /n.

We summarize the tail property of f in the following condition:

Condition C'9 (Tail Property of f). Assume there exists a generic constant C' such that

Var <%, Z—g) < C for any S;(+) and o in a fixed neighborhood of (5y(-), 09)-

Remark. The above condition is true for the Normal, Laplace, and Beta Distributions, among

others.

Condition C10 (Eigenvector of I). Suppose the smallest eigenvalue of I, r(I) = <% Suppose v
a>1
2

is a normalized eigenvector of 7(I), and that J~ = min |v;| for some fixed

Theorem 2. Under conditions C1-C5 and C8-C10, the following results hold for the sieve-ML
estimator:
(1) If the number of knots J satisfies the following growth condition:

(a) 5= =0,

Jrtr
(b) T 00, )
then |10 — 6p]| = Op(%).
(2) If condition 11 holds and the following growth conditions hold

(a) Jn\/; -0
J)\+r7a
(b) \/ﬁ — OO;
then (a) for every j = 1,...,J, there exists a number pyj;, such that 222 — 0, ‘L:j =
J

O(1), and
g (Br,1(7j) — Bro(75)) =7 N(0,1).
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and (b) for the parameter o, there exists a positive definite matriz V' of dimension dy X d,

such that the sieve estimator satisfies:
\/’E(O—J — 00) — N(O, V)

Proof. See Appendix D.3. O

Once we fix the number of interior points, we can use ML to estimate the sieve estimator.

We discuss how to compute the sieve-ML estimator in the next section.

4.1. Inference via Bootstrap. In the last section we proved asymptotic normality for the
sieve-ML estimator 6 = (3(7), o). However, computing the convergence speed ju5.5 for By j(7;)
by explicit formula can be difficult in general. To conduct inference, we recommend using
nonparametric bootstrap. Define (x%,4?) as a resampling of data (z;,y;) with replacement for

bootstrap iteration b =1, ... B, and define the estimator

0" = arg max E? [log g(y?|27, 0)], (4.5)
0€O 5

where IEZ denotes the operator of empirical average over resampled data for bootstrap iteration
b. Then our preferred form of the nonparametric bootstrap is to construct the 95% Confidence

Interval pointwise for each covariate k and quantile 7 from the variance @"(Bk(ﬂ) of each

vector of bootstrap coefficients {Bg(v')}le as Ek(v') *21_q2 1/ @(ﬂk(ﬂ) where the critical
value 21_4/2 ~ 1.96 for significance level of az = .05.

Chen and Pouzo (2013) establishes results in validity of the nonparametric bootstrap in
semiparametric models for a general functional of a parameter #. The Lemma below is an
implementation of theorem (5.1) of Chen and Pouzo (2013), and establishes the asymptotic
normality of the bootstrap estimates that allows us, for example, to use their empirical variance

to construct bootstrapped confidence intervals.

Lemma 8 (Validity of the Bootstrap). Under condition C1-C6 and C9, choosing the number of
knots J according to the condition stated in Theorem 1, the bootstrap defined in equation (4.5)
has the following property:

B (1) = Br.a(7)

K5

% N(0,1) (4.6)
Proof. See Appendix D.3. O

4.2. Weighted Least Squares. Under normality assumption of the EIV term e, the max-
imization of Q(:|¢) reduces to the minimization of a simple weighted least square problem.
Suppose the disturbance ¢ ~ N(0,02). Then the maximization problem (4.1) becomes the
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following, with the parameter vector § = [§(+), o]

max Q(¢'|6) :=E [log(f(y — x8'(r))|6")x(x, y, 6)|6] (4.7)

=aBlo) (1, o (=B
[/ Jo fy = wBlu a)du<2lg(2 T )d]

It is easy to see from the above equation that the maximization problem of f'(-)|6 is to

minimize the sum of weighted least squares. As in standard normal MLE, the FOC for §'(-)
does not depend on o’2. The o’ is solved after all the 5'() are solved from equation (4.7).
Therefore, the estimand can be implemented with an EM algorithm that reduces to iteration
on weighted least squares, which is both computationally tractable and easy to implement in
practice.

Given an initial estimate of a weighting matrix W, the weighted least squares estimates of
£ and o are

Bry) = (X'W;X)"'X'W;y
- 1 9
] (A

where W; is the diagonal matrix formed from the 4% column of W, which has elements Wj -

Given estimates £; =y — X 3 (1j) and &, the weights wj; for observation ¢ in the estimation
of B(7;) are
__ 9(E/0)
Wi = 7= 1/~ ~
7220 (Ei5/0)
where ¢(-) is the pdf of a standard normal distribution J is the number of 7s in the sieve, e.g.
J =9 if the quantile grid is {r;} = {0.1,0.2,...,0.9}.

(4.8)

5. MONTE-CARLO SIMULATIONS

We examine the properties of our estimator empirically in Monte-Carlo simulations. Let the
data-generating process be

yi = Po(u;) + x1:61(wi) + z2if2(us) + €

where n = 100,000, the conditional quantile u; of each individual is u ~ UJ0,1], and the
covariates are distributed as independent lognormal random variables, i.e. x1;, x2; ~ LN(0,1).
The coefficient vector is a function of the conditional quantile u; of individual 4

Bo(u) 1+ 2u —u?

Bi(u) = 5 exp(u)
Ba(u) u—+1
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In our baseline scenario, we draw mean-zero measurement error € from a mixed normal distri-
bution

N(=3,1) with probability 0.5

gi~ 4 N(2,1)  with probability 0.25

N(4,1)  with probability 0.25
We also probe the robustness of the mixture specification by simulating measurement error from
alternative distributions and testing how well modeling the error distribution as a Gaussian mix-
ture handles alternative scenarios to simulate real-world settings in which the econometrician
does not know the true distribution of the residuals.

We use a gradient-based constrained optimizer to find the maximizer of the log-likelihood
function defined in Section 3. See Appendix A for a summary of the constraints we impose and
analytic characterizations of the log-likelihood gradients for a mixture of three normals. We use
quantile regression coefficients for a 7-grid of J = 9 knots as start values. For the start values
of the distributional parameters, we place equal 1/3 weights on each mixture component, with
unit variance and means -1, 0, and 1.

As discussed in Section 2.1, the likelihood function is invariant to a permutation of the
particular quantile labels. For example, the log-likelihood function defined by equations (2.6)
and (2.7) would be exactly the same if (7 = .2) were exchanged with 5(7 = .5). Rearrangement
helps ensure that the final ordering is consistent with the assumption of z3(7) being monotonic
in 7 and weakly reduces the L? distance of the estimator //6’\ (+) with the true parameter functional
B(+). See Chernozhukov et al. (2009) for further discussion. Accordingly, we sort our estimated
coeflicient vectors by :iB (1) where Z is the mean of the design matrix across all observations.
Civen initial estimates 3(-), we take our final estimates for each simulation to be { ] (Tj)} for
j=1,.., J where B\(Tj) = B(Tr) and 7 is the element of B() corresponding to the j™ smallest
element of the vector Z3(-).

5.1. Simulation Results. In Figures 2 and 3, we plot the mean bias (across 500 Monte
Carlo simulations) of quantile regression of y (generated with measurement error drawn from a
mixture of three normals) on a constant, x1, and x5 and contrast that with the mean bias of our
estimator using a sieve for ((+) consisting of 9 knots. Quantile regression is badly biased, with
lower quantiles biased upwards towards the median-regression coefficients and upper quantiles
biased downwards towards the median-regression coefficients. While this pattern of bias towards
the median evident in Table 2 still holds, the pattern in Figures 2 and 3 is nonmonotonic for
quantiles below the median in the sense that the bias is actually greater for, e.g., 7 = 0.3 than
for 7 = 0.1. Simulations reveal that the monotonic bias towards the median result seems to
rely on a symmetric error distribution. Regardless, the bias of the ML estimator is statistically
indistinguishable from zero across quantiles of the conditional distribution of y given x, with an
average mean bias across quantiles of 2% and 1% (for 81 and fg, respectively) and always less
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FIGURE 2. Monte Carlo Simulation Results: Mean Bias of /3 (1)
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Notes: Figure plots mean bias of estimates of 8;(7) for classical quantile regression (blue line) and
bias-corrected MLE (red line) across 500 MC simulations using the data-generating process described
in the text with the measurement error generated as a mixture of three normals.

than 5% of the true coefficient magnitude. The mean bias of the quantile regression coefficients,
by contrast, is on average over 18% for nonlinear (31 (-) and exceeds 27% for some quantiles.

Figure 4 shows the true mixed-normal distribution of the measurement error ¢ as defined
above (dashed blue line) plotted with the estimated distribution of the measurement error from
the average estimated distributional parameters across all MC simulations (solid red line). The
95% confidence interval of the estimated density (dotted green line) are estimated pointwise as
the 5th and 95th percentile of EIV densities across all simulations. Despite the bimodal nature
of the true measurement error distribution, our algorithm captures the overall features of true
distribution very well, with the true density always within the tight confidence interval for the
estimated density.

In practice, the econometrician seldom has information on the distribution family to which
the measurement error belongs. To probe robustness on this dimension, we demonstrate the
flexibility of the Gaussian mixture-of-three specification by showing that it accommodates al-
ternative errors-in-variables data-generating processes well. Table 2 shows that when the errors
are distributed with thick tails (as a t-distribution with three degrees of freedom) in panel A or
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FIGURE 3. Monte Carlo Simulation Results: Mean Bias of /B\Q(T)
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Notes: Figure plots mean bias of estimates of S2(7) for classical quantile regression (blue line) and
bias-corrected MLE (red line) across 500 MC simulations using the data-generating process described
in the text with the measurement error generated as a mixture of three normals.

as a mixture of two normals in panel B, the ML estimates that model the EIV distribution as
a mixture of three normals are still unbiased. As expected, quantile regression exhibits typical
bias towards the median under both distributions and for both slope coefficients (visible as
positive mean bias for quantiles below the median and negative bias for quantiles above the
median). By comparison, ML estimates are generally much less biased than quantile regression
for both data-generating processes. Our ML framework easily accommodates mixtures of more

than three normal components for additional distributional flexibility in a quasi-MLE approach.

6. EMPIRICAL APPLICATION

To illustrate the use of our estimator in practice, we examine distributional heterogeneity
in the wage returns to education. First, we replicate and extend classical quantile regression
results from Angrist et al. (2006) by estimating the quantile-regression analog of a Mincer

regression,

@y x (7) = Bo(7) + B1(7)education; + B2(T)experience; + B3 (T)experience? + B4(7)black; (6.1)
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FIGURE 4. Monte Carlo Simulation Results: Distribution of Measurement Error
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Notes: Figure reports the true measurement error (dashed blue line), a mean-zero mixture of three
normals (N (=3,1), N(2,1), and N(4,1) with weights 0.5, 0.25, and 0.25, respectively) against the
average density estimated from the 500 Monte Carlo simulations (solid red line). For each grid point,
the dotted green line plots the 5th and 95th percentile of the EIV density function across all MC
simulations.

where g, x(7) is the 7t quantile of the conditional (on the covariates X) log-wage distribu-
tion, the education and experience variables are measured in years, and black is an indicator
variable.” Figure 5 plots results of estimating equation (6.1) by quantile regression on census
microdata samples from four decennial census years: 1980, 1990, 2000, and 2010, along with
simultaneous confidence intervals obtained from 200 bootstrap replications.® Horizontal lines in
Figure 5 represent OLS estimates of equation 5 for comparison. Consistent with the results in
Figure 2 of Angrist et al., we find quantile-regression evidence that heterogeneity in the returns
to education across the conditional wage distribution has increased over time. In 1980, an addi-
tional year of education was associated with a 7% increase in wages across all quantiles, nearly
"Here we emphasize that, in contrast to the linear Mincer equation, quantile regression assumes that all unob-
served heterogeneity enters through the unobserved rank of person i in the conditional wage distribution. The
presence of an additive error term, which could include both measurement error and wage factors unobserved
by the econometrician, would bias the estimation of the coefficient function f§(-).

8The 19802000 data come from Angrist et al.’s IPUMS query, and the 2010 follow their sample selection criteria

and again draw from IPUMS (Ruggles et al., 2015). For further details on the data including summary statistics,
see Appendix B.
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TABLE 2. MC Simulation Results: Robustness to Alternative Data-Generating Processes

A EIV~T B. EIV ~ Mixture of 2 N/
Bu B2 Bu B2
Quantile | QReg MLE QReg MLE | QReg MLE QReg MLE
0.1 0.00 0.01 0.09 -0.03| 0.14 0.04 0.18 0.03
0.2 0.06 -0.02 0.06 -0.02| 0.15 0.05 0.16 0.00
0.3 0.04 -0.02 0.05 -0.06| 0.09 0.05 0.09 0.00
0.4 0.03 0.00 0.03 -0.02| 0.03 0.05 -0.01 0.01
0.5 0.01 0.02 0.01 0.01 |-0.02 0.08 -0.06 0.02
0.6 0.00 0.04 -0.01 0.06 |-0.06 0.03 -0.09 0.03
0.7 -0.03 0.05 -0.03 0.05 | -0.09 0.05 -0.11 0.00
0.8 -0.06 0.0 -0.06 0.03 | -0.11 0.02 -0.12 0.02
0.9 -0.10 0.03 -0.10 0.04 | -0.13 -0.02 -0.11 -0.04
Note: Table reports mean bias of slope coefficients for estimates from classical quantile regression and
bias-corrected MLE across 200 MC simulations of n = 1,000 observations each using data simulated
from the data-generating process described in the text and the measurement error generated by either a
Student’s t distribution (left-hand columns) with three degrees of freedom or a mixture of two normals
N(—=2.4,1) and N(1.2,1) with weights 1/3 and 2/3, respectively.

identical to OLS estimates. In 1990, most of the conditional wage distribution still had a similar
education-wage gradient, although higher conditional (wage) quantiles saw a slightly stronger
association between education and wages. By 2000, the education coefficient was roughly seven
log points higher for the 95th percentile than for the 5th percentile. Data from 2010 shows a
large jump in the returns to education for the entire distribution, with top conditional incomes
increasing much less from 2000 to 2010 as bottom conditional incomes. Still, the post-1980
convexity of the education-wage gradient is readily visible in the 2010 results, with wages in
the top quartile of the conditional distribution being much more sensitive to years of schooling
than the rest of the distribution. In 2010, the education coefficient for the 95th percentile
percentile was six log points higher than the education coefficient for the 5th percentile. The
dependence of the wage-education gradient on the quantile of the wage distribution suggests
that average or local average treatment effects estimated from linear estimators fail to represent
the returns to education for a sizable portion of the population.

We observe a different pattern when we correct for measurement-error bias in the self-
reported wages used in the census data using ML estimation procedure. We estimate [(-)
for quantile grid of 33 knots, evenly distributed (7 € {j/ 34}?;) using our maximum likelihood
estimator developed in Section 3 above. As in our simulation results, for the error distribution,
we choose a mixture of three normals with the same default distributional start values (equal
weights, unit variances, means of -1, 0, 1). For coefficient start values, we run the maximization
procedure with start values taken from three alternatives and keep the estimate that results in
the higher log-likelihood value: standard quantile regression, the weighted least squares proce-
dure outlined in Section 4.2, and the mean of bootstrapping our ML estimates (using the WLS
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FI1GURE 5. Quantile Regression Estimates of the Returns to Education, 1980-2010
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Notes: Figure reports quantile regression estimates of log weekly wages (self-reported) on education, a
quadratic in experience, and an indicator for blacks for a grid of 19 evenly spaced quantiles from 0.05
to 0.95. Horizontal lines indicate OLS estimates for each year, and bootstrapped 95% simultaneous
confidence intervals are plotted for the quantile regression estimates for each year. The data comes
from the indicated decennial census year and consist of 40-49 year old white and black men born in
America. The number of observations in each sample is 65,023, 86,785, 97,397, and 106,625 in 1980,
1990, 2000, and 2010, respectively.

coefficients as start values for bootstrapping). We again sort our estimates by z3(7) to enforce
monotonicity at mean covariate values—see section 5 for details. We smooth our estimates by
bootstrapping (following Newton and Raftery, 1994) and then local linear regression of Bl (1) on
7 to reduce volatility of coefficient estimates across the conditional wage distribution. Finally,
we construct nonparametric 95% pointwise confidence intervals by bootstrapping and taking
the 5th and 95th percentiles of the smoothed education coefficients for each quantile.

Figure 6 plots the education coefficient Bl (1) from estimating equation (6.1) by MLE and
quantile regression, along with nonparametric simultaneous 95% confidence intervals. The
results suggest that in 1980, the quantile-regression estimates are relatively unaffected by mea-

surement error in the sense that the classical quantile-regression estimates and bias-corrected
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FIGURE 6. Returns to Education Correcting for LHS Measurement Error
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Notes: Graphs plot education coefficients estimated using quantile regression (red lines) and the ML
estimator described in the text (blue line). Green dashed lines plot 95% Confidence Intervals using the
bootstrap procedure described in the text. See notes to Figure (5).

ML estimates are nearly indistinguishable. For 1990, the pattern of increasing returns to edu-
cation for higher quantiles is again visible in the ML estimates with the very highest quantiles
seeing an approximately five log point larger increase in the education-wage gradient than
suggested by quantile regression, although this difference for top quantiles does not appear
statistically significant given typically wide confidence intervals for extremal quantiles. In the
2000 decennial census, the quantile-regression and ML estimates of the returns to education
again diverge for top incomes, with the point estimate suggesting that after correcting for mea-
surement error in self-reported wages, the true returns to an additional year of education for
the top of the conditional wage distribution was a statistically significant 13 log points (17
percentage points) higher than estimated by classical quantile regression. This bias correction
has a substantial effect on the amount of inequality estimated in the education-wage gradient,
with the ML estimates implying that top wage earners gained 23 log points (29 percentage
points) more from a year of education than workers in the bottom three quartiles of wage
earners. For 2010, both ML and classical quantile-regression estimates agree that the returns
to education increased across all quantiles, but again disagree about the marginal returns to
schooling for top wage earners. Although the divergence between ML and quantile regression
estimates for the top quartile is not as stark as in 2000, the quantile regression estimates at the
95th percentile of the conditional wage distribution are again outside the nonparametric 95%
confidence intervals for the ML estimates.
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FIGURE 7. ML Estimated Returns to Education Across Years
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Notes: Figure overlays ML estimates of the returns to education across the conditional wage distribution
from Figure 6. See notes to Figure 6 for details.

For each year after 1980, the quantile regression lines understate the returns to education in
the top tail of the wage distribution. Starting in 1990, correcting for measurement error in self-
reported wages significantly increases the estimated returns to education for the top quintile
of the conditional wage distribution, a distinction that is missed because of the measurement
error in self-reported wage data resulting in compression bias in the quantile regression coeffi-
cients. Figure 7 overlays each year’s ML estimates to facilitate easier comparisons across years.
Over time—especially between 1980 and 1990 and between 2000 and 2010—we see an overall
increase in the returns to education, broadly enjoyed across the wage distribution. The increase
in the education-wage gradient is relatively constant across the bottom three quartiles and very
different for the top quartile. These two trends—overall moderate increases and acute increases
in the schooling coefficient for top earners—are consistent with the observations of Angrist et
al. (2006) and other well-known work on inequality that finds significant increases in income in-
equality post-1980 (e.g. Autor et al., 2008). Nevertheless, the distributional story that emerges
from correcting for measurement error suggests that the concentration of education-linked wage
gains for top earners is even more substantial than is apparent in previous work. This finding is

particularly relevant for recent discussions of top-income inequality (see, for example, Piketty
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FIGURE 8. Estimated Distribution of Wage Measurement Error
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Note: Graph plots the estimated probability density function of the measurement error in 1990 when
specified as a mixture of three normal distributions.

and Saez, 2006). The time-varying nature of this relationship between the wage distribution
and education is suggestive in the role of macroeconomic context in measuring the returns to
education. If the wage earnings of highly educated workers at the top of the conditional wage
distribution is more volatile, then single-year snapshots of inequality may under or overstate
the relationship between wages and education. Judgment based solely on the 2000 pattern of
the education gradient would find significantly more inequity in the returns to education than
estimates using 2010 data. By 2010, not only had the overall returns to education increased
across nearly the entire wage distribution, but the particularly high education gradient enjoyed
by the top quartile seems to have been smoothed out and shared by the top half of the wage
distribution. Whether the slight decrease in the schooling coefficient for top earners is simply
a reflection of their higher exposure to the financial crisis (e.g. hedge-fund managers having
larger declines in compensation than average workers) is a question to be asked of future data.

Our methodology also permits a characterization of the distribution of dependent-variable
measurement error. Figure 8 plots the estimated distribution of the measurement error (solid
blue line) in the 1990 data. Despite the flexibility afforded by the mixture specification, the
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FIGURE 9. 2000 Estimated Returns to Education: WLS vs. MLE
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estimated density is approximately normal—unimodal and symmetric but with higher kurtosis
(fatter tails) than a single normal.

In light of the near-normality of the measurement error distribution estimated in the self-
reported wage data, we report results for weighted-least squares estimates of the returns to
education (see Section 4.2 for a discussion of the admissibility of the WLS estimator when the
EIV distribution is normal). Figure 9 shows the estimated education-wage gradient across the
conditional wage distribution for three estimators—quantile regression, weighted least squares,
and MLE. Both the WLS and MLE estimates revise the right-tail estimates of the relationship
between education and wages significantly, suggesting that the quantile regression-based esti-
mates for the top quintile of the wage distribution are severely biased from dependent-variable
errors in variables. The WLS estimates seem to be particularly affected by the extremal quan-
tile problem (see, e.g. Chernozhukov, 2005), leading us to omit unstable estimates in the top
and bottom deciles of the conditional wage distribution. While we prefer our MLE estimator,
the convenience of the weighted least squares estimator lies in its ability to recover many of the
qualitative facts obscured by LHS measurement error bias in quantile regression without the
ex-post smoothing (apart from dropping bottom- and top-decile extremal quantile estimates)
required to interpret the ML estimates.
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7. CONCLUSION

In this paper, we develop a methodology for estimating the functional parameter §(:) in
quantile regression models when there is measurement error in the dependent variable. Assum-
ing that the measurement error follows a distribution that is known up to a finite-dimensional
parameter, we establish general convergence speed results for the MLE-based approach. Under
a discontinuity assumption (C8), we establish the convergence speed of the sieve-ML estimator.
When the distribution of the EIV is normal, optimization problem becomes an EM problem
that can be computed with iterative weighted least squares. We prove the validity of boot-
strapping based on asymptotic normality of our estimator and suggest using a nonparametric
bootstrap procedure for inference. Monte Carlo results demonstrate substantial improvements
in mean bias of our estimator relative to classical quantile regression when there are modest
errors in the dependent variable, highlighted by the ability of our estimator to estimate the
simulated underlying measurement error distribution (a bimodal mixture of three normals)
with a high-degree of accuracy.

Finally, we revisited the Angrist et al. (2006) question of whether the returns to educa-
tion across the wage distribution have been changing over time. We find a somewhat different
pattern than prior work, highlighting the importance of correcting for errors in the dependent
variable of conditional quantile models. When we correct for likely measurement error in the
self-reported wage data, we find that top wages have grown much more sensitive to educa-
tion than wage earners in the bottom three quartiles of the conditional wage distribution, an

important source of secular trends in income inequality.
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APPENDIX A. OPTIMIZATION DETAILS

In this section, for practitioner convenience, we provide additional details on our optimization
routine, including analytic characterizations of the gradient of the log-likelihood function. For

convenience, we will refer to the log-likelihood [ for observation 7 as

1
= log/0 fely —xB(1))dr

where € is distributed as a mixture of L normal distributions, with probability density function
Lo U — [
L — e
) =Y Mo (M0,
o¢ o¢
/=1
For the mixture of normals, the probability weights 7, on each component ¢ must sum to unity.

Similarly, for the measurement error to be mean zero, ), pyme = 0, where py is the mean of

each component. For a three-component mixture, this pins down

1T+ pomo

H3:_1—7T1—7T2

(wherein we already used m3 = 1—m; —mg). We also need to require that each weight be bounded
by [0, 1]. To do this, we used a constrained optimizer and require that each of 7y, mg, 1—m —m9 >
0.01. The constraints on the variance of each component are that O'? > 0.01 for each £.

Using the piecewise constant form of §(-), let 3(7) be defined as

051 when 1o <7< 1
Bo when 1 <7< 1

B(r) =
Br when 1 <7 <71

where 1) = 0 and 7 = 1. Ignoring the constraints on the weight and mean of the last mixture

component for the moment, the first derivatives of [ with respect to each coefficient 8; and
distributional parameter are
ol

oL 1 y—mﬂ(ﬂ—w)
87W a fol fs( _xﬁ Jeqb( o¢ o

il
;Zg e / oi <y—xﬁa(;)—ue>d)(y—xﬁg)—w) ir
il

ol o <y—w6(7)—w>dT
8@ fO f=(y oy

i _ZMW [ (et (e,
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ol _ 1 /Tj Of(y .T,B])
dp; fol fely —xB(7))dr Jr;_4 9B;

= ! (75 — 7j-1) 0%y — 25;) _,wj)
fo fs(y - $5(7))d7 85]

(1 — 7j-1) o — 26 (—
fol fg(y—xﬁ<7'))d7'f€(y BJ)( )

—(rj—Ti_1)® 3 2B — — 2B —
- oo mae () ().

Jo fe(y —xB(7))dr (= 70

Incorporating the constraints on the final L' mixture weight and mean changes the first-

order conditions for the means and weights on the penultimate components. Denoting these
constrained parameters 7y and fiy for £ = 1,... L — 1 strictly less than the number of mixtures,
the new first derivatives for the first L — 1 means and weights are functions of the unconstrained
derivatives 0l/0my and Ol/0puy:

ol al Al (-3 1m+zﬂwg ol
o7y oy ory, ( Zé 1 TFZ) our,
oL ol m ol

87[%_87#6 Zé lﬂea,UL
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APPENDIX B. DATA APPENDIX

Following the sample selection criteria of Angrist et al. (2006), our data comes from 1%
samples of decennial census data available via IPUMS.org (Ruggles et al., 2015) from 1980—
2010. From each database, we select annual wage income, education, age, and race data for
prime-age (age 40-49) black and white males who have at least five years of education, were
born in the United States, had positive earnings and hours worked in the reference year, and
whose responses for age, education, and earnings were not imputed. Our dependent variable is
log weekly wage, obtained as annual wage income divided by weeks worked. For 1980, we take
the number of years of education to be the highest grade completed and follow the methodology
of Angrist et al. (2006) to convert the categorical education variable in 1990, 2000, and 2010
into a measure of the number of years of schooling. Experience is defined as age minus years
of education minus five. For 1980, 1990, and 2000, we use the exact extract of Angrist et
al., and draw our own data to extend the data to include the 2010 census. Table 3 reports
summary statistics for the variables used in the regressions in the text. Wages for 1980-2000
were expressed in 1989 dollars after deflating using the Personal Consumption Expenditures
Index. As slope coefficients in a log-linear quantile regression specification are unaffected by

scaling the dependent variable, we do not deflate our 2010 data.

TABLE 3. Education and Wages Summary Statistics

Year 1980 1990 2000 2010
Log weekly wage 6.40 6.46 6.47 8.34
(0.67) (0.69) (0.75) (0.78)
Education 12.89 13.88 13.84  14.06
(3.10) (2.65) (2.40) (2.37)
Experience 25.46 24.19 2450  24.60
(4.33) (4.02) (3.59) (3.82)
Black 0.076 0.077 0.074  0.078
(0.27) (0.27) (0.26)  (0.27)
Number of Observations | 65,023 86,785 97,397 106,625

Notes: Table reports summary statistics for the Census data used in the quantile wage regressions in
the text. The 1980, 1990, and 2000 datasets come from Angrist et al. (2006). Following their sample
selection, we extended the sample to include 2010 Census microdata from IPUMS.org (Ruggles et al.,
2015).
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APPENDIX C. DECONVOLUTION METHOD

Although the direct MLE method is used to obtain identification and some asymptotic
properties of the estimator, the main asymptotic property of the maximum likelihood estimator
depends on discontinuity assumption C.9. Evodokimov (2011) establishes a method using
deconvolution to solve a similar problem under panel data condition. He adopts a nonparametric
setting and therefore needs kernel estimation method.

Instead, in the special case of quantile regression setting, we can further explore the linear
structure without using the nonparametric method. Deconvolution offers a straight forward
view of the estimation procedure.

The CDF function of a random variable w can be computed from the characteristic function

dw(S).

q p—iws

1
F =—-—1
(w) 2 qggo —q 2mis

¢w(5)d5~ (Cl)

Bo(T) satisfying the following conditional moment condition:

E[F(zBo(T)|z)] = T. (C.2)
Since we only observe y = z3(T) + ¢, the ¢,5(s) = %(;:pi((si‘;?m- Therefore fy(7) satisfies:
1 9 Ele~iy=2ho(T))s 4]
El-—-7-1 ds|z| = :
[2 T o —q 2misp: () slz] =0 (€3)

In the above expression, the limit symbol before the integral can not be exchanged with the
followed conditional expectation symbol. But in practice, they can be exchanged if the integral
is truncated.

A simple way to explore information in the above conditional moment equation is to consider

the following moment conditions:

1 7 ple—iy—zbo(7))s
x < — 7+ Im( lim le 2] ds))] =0 (C.4)

E
2 q—o0 J_, 27w spe($)

Let F(xB,y,T,q) = % —7—1Im {f_qq 76_;2;2;” ds}.
Given fixed truncation threshold ¢, the optimal estimator of the kind E,[f(z)F(z8,y, T, q)]
is:
OF
where o(2)? := E[F(z0,y,7)%|z].

Another convenient estimator is:
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arg min By [F(¢8,y, 7, ). (C.6)

These estimators have similar behaviors in term of convergence speed, so we will only discuss
the optimal estimator. Although it can not be computed directly because the weight g—g Jo(z)?

depends on 3, it can be achieved by an iterative method.

Theorem 3. (a) Under condition OS with X > 1, the estimator [ satisfying equation (3.15)
with truncation threshold g, = CN2x satisfies:
B~ Bo = O(N~), (C7)

(b) Under condition SS with, the estimator B satisfies equation (3.15) with truncation thresh-
old ¢, = C’log(n)% satisfies:
—-1
B = Bo = O(log(n) *). (C.8)
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APPENDIX D. PROOFS OF LEMMAS AND THEOREMS

D.1. Lemmas and Theorems in Section 2. In this section we prove the Lemmas and
Theorems in section 2.

Proof of Lemma 1.

Proof. For any sequence of monotone functions f1, fo, ..., fn, ... with each one mapping [a, b] into
some closed interval [, d]. For bounded monotonic functions, point convergence means uniform
convergence, therefore this space is compact. Hence the product space By X By X ... X By is
compact. It is complete since L? functional space is complete and limit of monotone functions
is still monotone. g

Proof of Lemma 2.

Proof. WLOG, under condition C.1-C.3, we can assume the variable x; is continuous. If there
exists (-) and f(-) which generates the same density g(y|z, 3(-), f) as the true paramter Sy(-)
and fo(-), then by applying Fourier transformation,

1 1
6(s) /0 exp(isB(r))dr = do(s) /O explisfo(r))dr.

Denote m(s) = (fo(—(sg) =1+ 7%, ax(is)* around a neighborhood of 0. Therefore,

m(s) /01 exp(isr_16-1(7)) i (is)kxlllzwdT _ /01 explisz1601( i is) 50 ()" i

=0 =0
Since x1is continuous, then it must be that the corresponding polynomials of xjare the same
for both sides. Namely,

(is)" (is)"

1 1
m(s) x /Oexp(isx_lﬁ_l(r))ﬁl(T)de: X /0exp(isa:_lﬁo__l(T))Bovl(r)kdr

Divide both sides of the above equation by (is)*/k!, as let s approaching 0, we get:

1 1
k = k T.
/0 By (r)dr = /0 fo()hd

By assumption C.2, 8i(-) and Sy 1(-) are both strictly monotone, differentiable and greater
than or equal to 0. So (1) = Bo1(7) for all 7 € [0,1].

Now consider the same equation considered above. divide both sides by (is)*/k!, we get

s) fol exp(isz_18-1(7))Bo1(T)Fdr = fol exp(isz_180.-1(7))Bo(T)*dr for all k > 0.

Since Bp1(7)¥,k > 1 is a functional basis of L2[0,1], therefore m(s)exp(isz_16-1(7)) =
exp(isz_1P0,—1(7)) for all s in a neighborhood of 0 and all 7 € [0,1]. If we differentiate both
sides with respect to s and evaluate at 0 (notice that m/(0) = 0), we get:
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T_1B-1(7) = x_180,-1(7),
for all 7 € [0, 1].
By assumption C.2, E[2'z] is non-singular. Therefore E[z’ ;x_1] is also non-singular. Hence,
the above equation suggests S_1(7) = So,—1(7), for all 7 € [0, 1]. Therefore, (1) = Bo(7).This

implies that ¢(s) = ¢o(s). Hence f(e) = fo(e).
t

Proof of Lemma 3.

Proof. Proof: (a) If the equation stated in (a) holds a.e., then we can apply Fourier transfor-

mation on both sides, i.e., conditional on =z,

/Zsy/ fyly — 2B(7))at(r dey—/ ZSy/ / fo(y — 2B(7))drdy. (D.1)

Let q(7) = x(7), which is a strictly increasing function. We can use change of variables to
change 7 to q.
We get:

1 1
[ e Oat(e) [0 iy —a(rydr = [ [ om0 gy
(D.2)

or, equivalently,

! ZSQZ‘ T ! ST a¢€( )
| e Oty (isyon(s) = [ e 0ar L, D3

given that [ f'(y)e'¥dy = —is [ f(y)e'*¥dy.
Denote fol B gt (1)dr = q(z, 5), and fol e dr = r(x,s). Therefore,

) 00<(s
~isq(s, 2)(s) = (s, 1) 22,
First we consider normal distribution. ¢.(s) = exp(—c2s?/2). So &%La(s) = —052¢p.(s).

Therefore, q(s,z) = isor(s,z), for all s and x with positive probability. Since z3(7) is
strictly increasing, let z = xﬁ( ), and I(y) = 1(z5(0) <y < zp(1)).

So q(s,x) = [, st{;j(z l(w I(w)}dw, and r(s,z) = [ eisw{mf(w)}dw.

q(s,x) = isor(s,r) means that there is a relationship between the integrands. More specifi-

cally, it must be that

M[(M) — d;I(w)/dw. (D.4)

z2 (27 (w)) z2'(z7H(w))
Obviously they don’t equal to each other for a continuous interval of x;, because the latter

function has a § function component.
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For more general distribution function f, —isq(s,z)d:(s) = r(s,x)ad)g(fs), with 84)57(58) =
b:(s)s?m(s), for some m(s) := >0 a;(is)’.
Therefore,

—ism(s)r(s,x) = q(s,x).

Consider local expansion of s in both sides, we get:

e . NG — [ k (Zs)k — [ k (Zs)k
—is(Yas sV [ @ar)kar ) = 37 [ @B Far(ryar

j=0 k=00 : j=070 :
Compare the k" polynomial of s, we get:
fol(xﬂ(r))kmt(T)dT =0,if k=0.

3 . . is j—1

Jo @B Fat(r)dr = = 30,y a;(is) (Jy 2B(r)y~dr oy
Let z1 be the continuous variable, and x_1 be the variables left. Let 81 be the coefficient

corresponds to 1 and let 5_1 be the coefficient corresponds to z_1. Let ¢; be the component
in t that corresponds to z1, and let t_1 be the component in ¢ that corresponds to xz_;.

Then, consider the (k + 1) order polynomial of z;, we get:

1
/0 51 (T)ktl(T)dT =0.

since B1(7)¥, k > 0 form a functional basis in L2[0,1], t;(7) must equal to 0.
Consider the k" order polynomial of z1, we get:

1
/0 51 (T)k(x_lt_l(T))dT =0.

So z_1t_1(7) =0 for all 7 € [0,1]. Since E[x_12’ ;] has full rank, it must be that t_1(7) = 0.

Hence local identification condition holds. O

D.2. Lemmas and Theorems in Section 3. In this subsection, we prove the Lemmas and

Theorems in section 3.
Lemma 9 (Donskerness of ©). The parameter space © is Donsker.

Proof. By theorem 2.7.5 of Van der Vaart and Wellner (2000), the space of bounded monotone

function, denoted as F, satisfies:

1
lOgND(Ew/—:a LT(Q)) g ng

for every probability measure Q and every r > 1, and a constant K which depends only on
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Since O is a product space of bounded monotone functions M and a finite dimensional

bounded compact set 3, therefore the bracketing number of © given any measure @) is also
bounded by:

logNp (e, %, Lr(Q)) < de;

Therefore, foa log Ni(€,0,Q) < o0, i.e., © is Donsker. O
Proof of Lemma 4.

Proof. L,(6) > Ly (6p) by definition, and we know that L(6y) > L(#) by information inequality.
By Lemma 10, since © is Donsker, then the following stochastic equicontinuity condition
holds:

Vi(Ln(0) = Ln(61) = (L(6) = L(61))) —p 7,
for some generic term r, = op(1), if |6 — 01| < 7, for small enough 7,. Therefore uniform
convergence of L, () — L(#) holds in ©. In addition, by Lemma 2, the parameter 6 is globally
identified. Also, it is obvious that L is continuous in 6.

Therefore, the usual consistency result of MLE estimator applies here. (Il

Proof of Lemma 5.

Proof of Lemma 6.

Proof. By definition,

En[log(g(ylz, 8, 0))] = En[log(g(ylz, Bo, 00))]- (D.5)
And we know that by information inequality, Ellog(g(y|z, 5, 0))] < E[log(g(y|z, Bo, 00))].
Therefore, E[log(g(y|z, 3,0))]-Ellog(g(ylz, fo, 00))] > —=Gnllog(g(ylz, 8,0))~g(ylz, fo, 00))]-
By Donskerness of parameter space O, the following equicontinuity condition holds:

Hence,

0 < Eflog(g(yl, fo, 00))] — Eflog(g(sl. B 0))] Zy jﬁ (D.6)

Because o is converging to the true parameter in \/n speed, we will simply use og here in
the argument because it won’t affect our analysis later. In the notation, I will abbreviate oy.

Let z(y,x) = g(y|5,x) — g(y|Bo, z). In equation 3.19, we know that the KL-discrepancy of
9(ylz, Bo) and g(y|z, B), noted as D(g(-|5o)||g(-|3)), is bounded by C’ﬁ with p — 1.

So B, lll2lo)1]2 < D(g(180)l19(18)) < 2(Ellog(g(yle, fo, a0))] — Elloglg(yle, 8,0)]) 3
T where [z(yl2)l = [7 2 (yl)ldy.

Now consider the characteristic function of y conditional on z:
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75 9(ylB, x)esvdy

zB\S) = )
$a85) 5:)
and
25 9(y|Bo, x)e™*Vd
oo (5) = —oo 9\Y1P0, Y
zBo ¢5(3) :
Theref
erefore [ s(yle)eidy
¢Z‘ﬁ(8) - qbdfﬁo (8) = (b (8) ) (D7)
(3
and [¢,(s) — %ﬁo( ) < B
Let Fy(w) = 3 — limgyo0 [? . ;:;mqbn( )ds. Then F(w) is the CDF of the random variable
1. _
Let F(w,q) = 3 — fq e;;isqﬁn(s)ds. If the p.d.f of  is a C'* function and 7 has finite second

order moment, then F(w,q) = F,(w) + O(q%). Since = and [ are bounded, let n = zf(71),
then there exists a common C' such that |Fys(w,q) — Fya(w)| <z Cforallz € X and w € R

for q being large enough.
I\Z(y\ )Hl

Therefore ’Fl’ﬁ(wa(I) - Fxﬁo(w q | = |qu 621:: @bxﬁ( ) ¢xﬁo ds’ |f |¢e | ~
|12(y|z)[[1x(q)-
Consider the follow moment condition:
Elx(Fyp,(xfo) — 1) =0 (D.8)

Let Iy denote F,5, and F' denote Fg.
We will replace the moment condition stated in (J.8) by the truncated function F'(w,q). So
by the truncation property, for any fixed § € R%:

SE[x(Fo(2f) — Fo(xbo))] = 0E[x(Fo(zf) — F(xf))] = 6 Elx(Fo(xB, q) — F(x5,9))] + 0(q12)-
(

D.9)

The first term of the right hand side is bounded by:

Elloz|x(g)||z(y|z)[|1] 2 Elll2(ylz)|[1]x(q)-
And §E[z(Fo(zB) — Fo(zo))] = 0E[x"z f(xLo(7))](B(T) — Bo(T)) (1 +0(1)), where f(z80(T))

is the p.d.f of the random variablex3y(-) evaluated at 7.
Hence, B(7) — Bo(7) = op(%) +0(Z).
Under OS condition, x(¢) = ¢*, so by choosing ¢ = Cn4<k1+2>, [|1B(T) = Bo(T)]]2 Zp 0T
Under SS condition, x(q) = C1(1+ |q|®?) exp(|¢|*/C3). By choosing q = Clog(n)ﬁ, ||B(T)—
Bo(r)l|2 Zp lo(n) 7. O
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D.3. Lemmas and Theorems in Sections 4 and 5. In this subsection we prove the Lemmas
and Theorems in section 4.

Proof of Lemma 8.

Proof. Suppose f satisfies discontinuity condition C8 with degree A > 0.
Denote Iy, = (fry, fras s frir o)
For any (pi,d) € Py, pidip), = El [z %dy] > E[(lxp},)?], since g is bounded from above.
Assume ¢ := infeg re(0.17(z6'(7)) > 0. Now consider an interval [y, y + 53=)-
Let S(A) :== Z;\ZO(AC§)2, where C? stands for the combinatorial number choosing b elements

from a set with size a.

So,
72 A ,
sover | By DIC [ 0ty Xk + 5/ 2Nk,
And by Cauchy-Schwarz inequality,
A
BIY(CRP [ (uly+ 3/ (2uke) iy + 5/ (2Aukc)*dy
j=0

A
/R S (1Y Cllily + 3/ (2Xuke) ph(y + 3/ (2huke)))*dy).
Jj=0

let J]i = [a+x6(2+1/2) 2)\uk’a+x6( 1/2) + ﬁ]a SO

A
Z / Uiy + 5/ (2 uke))pi(y + 5/ (2Auke))) dy)

Jj=

A
> B / (S (—1Y Gy + 5/ @Nuke))ph(y + 1/ (2Nuke)))?dy).

7

k 7=0
By discontinuity assumption, ,

A

D (=1 iy + 3/ (2Xuke) )p(y + j/ (2\ukc))
j=0

1 c
= ( zip; + Z jpj)
k A—1 A — ' ) 7
(uk)A=12( kS
with ¢; uniformly bounded from above, since f (N is L' Lipschitz except at a.
Notice that J; does not intersect each other, so S(A) E|[ [ (lxp})*dy] = S(N) Sk E[fjli (Ikp),)*dy]

'k ik <k
> Elgp Zi:ﬂwﬁ(ﬁlw; + %ﬁ j=1,j#i xjpj)}Q]

For constant u being large enough (only depend on A, sup ¢;, and ¢),
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I (b (st + 5 Y5, eaims) ) = e\ s Y5, Bla2p?) =< g ol 3

with some constant ¢(A) only depends on A and wu.

In addition, from condition C5, we know that 010 > ||5]|3.

Therefore 0130 = ||6]13 + wxpll3 = zx1/0]13. Hence, the smallest eigenvalue r(Iy) of Iy, is
bounded by 75, with some generic constant ¢ depending on A, z, the the L' Lipshitz coefficient
of f*) at set R — [a —n,a +7)]. O

Proof of Lemma 9.

Proof. The proof of this Lemma is based on Chen (2008) results of sieve extremum estimator
consistency. Below I recall the five Conditions listed in Theorem 3.1 of Chen (2008). Theo-
rem 3.1 in Chen (2008) shows that as long as the following conditions are satisfied, the sieve

estimator is consistent.

Condition C11. [Identification] (1) L(6p) < oo, and if L(Ay) = —oo then L(0) > —oo for all
0 €O\ {0} for all £ > 1.

(2)there are a nonincreasing positive function §(-) and a positive function m(-) such that for
alle >0and k > 1,

L(6y) — sup > d(k)m(e) > 0.
669k:d(9700)L(9k)25
Condition C12. [Sieve Space] O C Oky1 C © for all £k > 1; and there exists a sequence
k0o € O such that d(6y, m0y) — 0 as k — 0.

Condition C13. [Continuity| (1)L(#) is upper semicontinuous on Oy under metric d(-, ).
(2) [L(00) — L(mk(ny00)| = 0(6(k(n))).

Condition C14. [compact Sieve space| Oy is compact under d(,-).

Condition C15. [uniform convergence| 1) For all k& > 1, plimsupycg, |Ln(0) — L(0)] = 0. 2)
c(k(n)) = 0p(0(k(n))) where c(k(n)) := suppee, [ Ln(0) = L(O)]. 3) nim) = 0(6(k(n))).

These assumptions are verified below:

For Identification: Let d be the metric induced by theL? norm || - ||2defined on ©. By
assumption C4 and compactness of ©, L(6y) — supgce.q(s,0,) L(0k) > 0 for any € > 0. So let
d(k) = 1, Identification condition holds.

For condition Sieve Space: Our Sieve space satisfies O C O9; C O. In general we can conside
the sequence Oqk(1), Ogk(2), ..., Ogk(n)... instead of O1,O2,03... with k(n) being an increasing
function and lim,,_,o k(n) = occ.

For condition Continuity: Since we assume f is continuous and L' Lipshitz, (1) is satisfied.
(2) is statisfied under the construction of our Sieve space.

Condition Compact Sieve Space is trivial.
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The condition Uniform Convergence is also easy to verify since the entropy metric of space
Oy is finite and uniformly bounded by the entropy metric of ©. Therefore we have stochastic
equi-continuity, i.e., supgeg, [Ln(0) — L(0)] = Op(ﬁ)‘

In (3), 7y is defined as the error in the maximization procedure. Since ¢ is constant, as soon
as our maximizer 0, satisfies L, (6;) — Supgee, Ln(0r) — 0, (3) is verified.

Hence, the Sieve MLE estimator is consistent.

Proof of Lemma 10.

Proof. This theorem follows directly from Lemma 8. If the neighborhood -; of 6 is chosen as
Aj = {9 € 0Oy : |9—¢90|2 < %},

with py being a sequence converging to 0, then the non-linear term in E, [ fy
is dominated by the first order term 0I%6’.

(g(ylz,00)—g(ylz,0))?
oy

O
Proof of Theorem 1.

Proof. Suppose 0 = (B(-),0) € Oy is the Sieve estimator. By Lemma 8, the consistency of
Sieve estimator shows that [|6 — ||z —p 0.
Denote 7; = %, 1=1,2,..,k

First order condition gives:

En[—af'(y — xB(r)|o)] = 0. (D.10)
and
Enlg0(ylz, B,0)] = 0. (D.11)
Assume that we choose k = k(n) such that:
(1)EMY10 — 6|2 —p 0.
(2)k"]|0 — p||2 — oo with p — 1.
And assume that » > XA 4+ 1. Such sequence k(n) exists because Lemma 7 shows an upper
bound for |18 — 8|, i.e., ||6o — 6]l2 <p 0 7.
From the first order condition, we know that:
Jr W, 0), fr,(yl2, 0), ..., [, (yl2, 0) go(ylz,0)
9(ylz,0) " 9(ylz,0)
Denote fo, = (fry (912, 0), fra (4], 0), s Fr (y],0)).

Therefore,

E,[( )] =0.

w90 _ g ofo 9oy _ g oo oo for0 goo
O—En[(g,g)] (En[(gvg)] En[( pratie )]) + Enl( ol )]-

The first term can be decomposed as:
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Bl 92— g ((d% S0y 4 (L 9oy (Jk0 go0y)

99 90" 90 "9 9 9 " 9o
By C10, we know that CLT holds pointwise in the space ©y, for En[(%, g—g)].

Define ¥ := U[0, 1] x ©. Consider a mapping H : ¥ — R,H((u,0)) = \/H(En[f?“] — E[%])
By Donskerness of © and UJ0, 1], ¥ is Donsker. By C10, we have pointwise CLT for H((u,#)).
By condition C2, the Lipshitz condition guarantees that EH%(G) — %‘(9’)|2] = |10 —0'||3.

Therefore, stochastic equicontinuity holds: for v small enough,

Pr( sup [H((u,0)) = H((u',6")| = 7) = 0.
{lu=|<7,16-0'||2<7,60,6' €O}

Similarly we have stochastic equicontinuity on /nk,[%].

3 f o f 5 a, f ol f ) T, _ f o
Notice E[(%, 22) — (%, ggTO)] =0, so En[(%a ) — (F8 920)) = o, () —i—E[(%, 9o) —

for.0 g0
(B, 222)) = 0y

Therefore, the first term = En[(%, g?")] - En[(fg%, Z—g)] + 0p(1).

f?;’o , g;—(;o)], we can establishes a functional CLT:

Similarly, for the second term, E,[(

1 1
En[(fek’o ) @)} = 7@%(7’1,7’2, ...,Tk) + Op(*) c erd1+dp’

go 9o \F \/ﬁ

where G, (+) :== \/ﬁEn[(g—glgngl, Q"T'O)] is weakly converging to a tight Gaussian process.

3

Therefore,

fak Jovy @ 9o :_L
Enl(f2, So) - (o Sy 2

Similarly by stochastic equicontinuity, we can replace fy, with fp, and g, with og on the left

Gn(Tl,TQ, ...,Tk)(l + Op(l)).

hand side of the above equation. And now we get:

79_90 :L T1, T2 T @)
E[(fHoﬂcho)( gg )] \/ﬁGn( 3 T2y 00y k)<1+ P(1)>7 (D'12)

where g — go = g(ylz,0) — g(ylz,00) == g(ylz,0) — g(ylz, Ti00) + (9(y|z, ko) — g(y|, 60))-

By the construction of Sieve, g(y|x, mx00) — g(y|x, 0y) = O(ﬁ), which depends only on the
order of Spline employed in the estimation process.

The fist term g(yle.0) — gyl m00) = (0 — 700) (f5.95)'

where 6 and o are some value between 6 and 7.6.

Denote Iy, = E[(fo,, 9o0)' (f7: 95)]-

The eigenvalue norm ||l — Ix||2 = ||E[(f90,ggo)’(f§— Joo: 95 — 9oo)]|2-

While Hfg— fgo,ga — gUOHQ :j |]6 — 7Tk90H2 + ”7Tk90 — 90”2 ;5 H9 — 7Tk00H2 (By the choice of
k, [|0 — w002 > ||0 — Ool]2 — ||7mKO0 — Oo||2- The first term dominates the second term because
O(3) Z llm80 — Boll2 and k7[|0 — bo|l2 = o)
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Since sup,, || (fa: 9o )2 5 ks 11Tk — Tel|2 3 KI10 — mibo]l2-
Denote H := I, — I, so

1
[1H]]2 Z k[0 = 7boll2 Z 116 = Ooll2 Zp 13- (D.13)

L' =+ H) ' =[N+ P H) !

By (J.13), |1, 1H|\2 < KN 0(1) = 0p(1). Therefore, I + I, ' H is invertible and has eigenvalues
bounded from above and below uniformly in k. Hence the matrix I, e L's largest eigenvalue is
bounded by Ck* for some generic constant C' with p — 1. Furthermore, fk_ =1, L1+ 0,(1)).

Apply our result in (J.12), we get: § — w6y = I, I}G (1+0p(1)). So [|16 — ol|2 = Op(%).
Moreover, under condition C.11,

10— boll2 Zp

Since at the beginning we assume: (1) k1|0 — 6|2 — 0. (2) k7|6 — 6|2 — oo with p — 1,
and |6 — 70|l = Op(F)-

Now we prove the condition that ||§ — 6p||2 = Op(\k/—%)

the regularity condition for k is:

()52 — 0.

(0)2 = oo,

If k satisfies growth conditions (1) and (2), the Sieve estimator 6}, satisfies:

A K
Hk—eo—gk—ﬂ'go—i-ﬂ'go—@o—o(\/>)+O(kr> Op(%)
Under condition C.11,
1 Ao 1
— 7y =1, ! 1)) = I
0 7T00 \/* ( +0P( )) ~p \/ﬁ ~
Therefore,
0 — 6y _Ik;_ Gn(1+ 0p(1)).

\F

And pointwise asymptotic normality holds.

For parameter o, we would like to recall Chen’s (2008) result. In fact, we use a result
slightly stronger than that in Chen (2008), but the reasoning are similar. For k satisfying
growth condition in (1), we know that L(0) — L(6y) < ||6 — 6p||x, where 6, € O NN} and ||-||x
is defined as < -, I*- >

For a functional of interest, h : © :— R, define the partial derivative:

oh h(6p + t[0 — o)) — h(6o)
= lim .
90 " =0 t

Define V' be the space spanned by © — 6.
By Riesz representation theory, there exists a v* € V such that %[9 — O] =< 0 — bp,v* >,
where < -, - > is induced by || - ||
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Below are five conditions needed for asymptotic normality of h(6).

Condition C16. (i)There is w > 0 such that |h(6 — 0 — %[0—90])\ = O(]|0 —6o]|*) uniformly
in § € ©,, with [|0 — 0|| = o(1);

"

(ii) | 249 || < oo

(iii)there is m,v* € O such that ||m,v* — v*|| x Hé\n —bpl| = op(n%l).

This assumption is easy to verify because our function h is a linear function in o: h(6) = §'c.
Therefore the first and third condition is automatically verified. The second condition is true
because of assumption C.6. So v* = (0, E[gs,094.0] 6). Denote I, := E[go,09, 0]

Let &,, denote any sequence satisfying: ¢, = o(n_l/ 2). Suppose the Sieve estimator converges
to By faster than d,,.

Define the functional operator u, = E, — E.

Condition C17.

Z

[+enmav*]) = Op(e2).
0EO4 (n3l|0—00]| <5 90

n
In fact this assumption is the stochastic continuity assumption. It can be verified by P-

Donskerness of © and L' Lipshitz property that we assume on the function f.

Denote K (61,602) = L(01) — L(62).

Condition C18.

(6, Z) ~

El 00 [T v*]] =< On — O, Tpv™ > +O(n_1/2)'

—~ ~ ~ ./
We know that B[22 [r,0*]] = p[e=tiltn) [ 215) = plo=lultb) 1715

7
We know that |0, — 6pla = Op(ﬁ) and km\/; — 0, 50 [0 — 6p|3 = op(n~ M/ —

/R
o(n=1/2).

And we know that E[W] =0. So

ga(y|x7é\n) -~ 1 1
E[Z2I 70 — Blg, (yle, 0,) (= — =)
[ p ] 190 (y] )(g go)]
By L! Lipshitz condition [g—go| < Ci(z,y)|0—60|2, and |g5(165)—go(|60)| < Ca(z, y)|0—002.

And such coefficients has nice tail properties. Therefore,

~ 1 1 dg/00 . ~ ~
Elg.(y|z, Qn)(g - g—o)] = Flg,(y|x, 6p)( 9/2 ) (0 — 00)] + O(|6,, — 90@)'
Then B[22 (0] = E[(6, - 90)/%90((@&, 00)'8] + op(n=1/%).

The first part of the equation above is < 5n — Oy, Ut >.

Condition C19. (i) Mn(%[ﬂ‘nv* —v*]) = 0,(n"1/2).
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.. ol(6o,Z * —
(i) B[22 [mv*]] = o(n~1/2).
(i) is obvious since v* = m,v*. (ii) is also obvious since it equals to 0.
Condition C20.
0l(bo, Z)

[0*]} —a N(0,07),
witho? > 0.

This assumption is also not hard to verify because al(g"@’z) [v*] is a random variable with

variance bounded from above. It is not degenerate because E[g,g,] is positive definite.

Then by theorem 4.3 in Chen (2008), for any o, our sieve estimator 6,, have the property:

Vnd' (on — 00) =4 N(0,02).
Since the above conclusion is true for arbitrary §, v/n(o, — 09) must be jointly asymptotic

normal, i.e., there exists a positive definite matrix V such that v/n(o, — o¢) —q¢ N (0,V).
g

D.4. Lemmas and Theorems in Appendix I. In this subsection we prove the Lemmas and
Theorems stated in section 5.
Proof of Theorem 2.

Proof. For simplicity, we assume the ¢.(s) is a real function. The proof is similar when it is
complex. Then,

1
F(x57y7Q):7_T+

2

Under condition OS,

|F(28,y,q)| < C(¢*'+1) if A > 1, for some fixed C and ¢ large enough.

Under condition SS, |F(z3,y,q)| < C1exp(q*/Cs) for some fixed Cy and Cs.

Let h(x,y) = F] Oq" COS((ZJ;’JUB)S) ¢j€s)].

By change of integration, E[f(;]" COS((Z/;JU/B)S) ¢sz | <C.

Let o(x)? = E[F(zf,y,T,q)?|7].

Under condition OS, by similar computation, C;¢>*—Y < o(x)? < Co**Y and under
condition SS, C; exp(q*/C3) < o(x)? < Cyexp(q*/Cy), for some fixed C1,Co, C3, Cy.

For simplicity, let m(\) = ¢*~! if OS condition holds, and let m()\) = exp(¢*/C) if SS holds
with constant C.

" sin((y — 28)s) 1
/0 — () ds.

B is solving:

En[w:(%)ﬁ(xﬂ, y:7.q)] = 0. (D.14)

Adopting the usual local expansion:
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En[};((m x)yQ) (F'(28,y,7,9)=F(xBo,y,7,9))] = —{En[ho(a)yz) (F (B0, y, 7, 9)]—E[ :(%)2 (F(zBo,y,7,q)]}
(D.15)
_E[h;?;)yg) (F(IL'B(), Y, 7, Q)]
The left hand side equals:
T 2 2
(B—%MM%%QQ]ﬂ+%UD=méyEW%wfﬂw—ﬁwﬂ+%U»

I[(x,q) is a bounded function converging uniformly to {(x, 00).
The first term of the RHS is:

1 h(z,y) f(zB,y,7,q) 1

" T e T O ey
The second term of the RHS is:
2 (Pabo,y, 7, q)] = O(—L).
o(z)? Y m(A)?
Therefore, 8 — By = OP(%) + O(%).

Under SS, the optimal g level is log(n)i and the optimal convergence speed is therefore
log(n)_Tl. Under OS condition, the optimal ¢ = n%, and the optimal convergence speed is
1
: O
1

n2




